介绍
我们拥有的数据太少,无法建立机器学习模型。我们需要更多数据!
如果这句话听起来很熟悉,那么你并不孤单!希望获得更多数据来训练我们的机器学习模型是一个一直困扰人们的问题。我们无法在数据科学项目中获得可以直接使用的Excel或.csv文件,对吗?
那么,如何应对数据匮乏的问题呢?
实现此目的最有效,最简单的方法之一就是通过网页抓取。我个人发现网络抓取是一种非常有用的技术,可以从多个网站收集数据。如今,某些网站还为你可能希望使用的许多不同类型的数据提供API,例如Tweets或LinkedIn帖子。
但是有时你可能需要从不提供特定API的网站收集数据。这就是web抓取能力派上用场的地方。作为数据科学家,你可以编写一个简单的Python脚本并提取所需的数据。
因此,在本文中,我们将学习Web抓取的不同组件,然后直接研究Python,以了解如何使用流行且高效的BeautifulSoup库执行Web抓取。
请注意,网页抓取要遵守许多准则和规则。并非每个网站都允许用户抓取内容,因此存在一定的法律限制。在尝试执行此操作之前,请务必确保已阅读网站的网站条款和条件。
目录
3个流行的工具和库,用于Python中的Web爬虫Web爬网的组件CrawlParseandTransformStore从网页中爬取URL和电子邮件ID爬取图片在页面加载时抓取数据3个流行的工具和库,用于Python中的Web爬虫
你将在Python中遇到多个用于Web抓取的库和框架。以下是三种高效完成任务的热门工具:
BeautifulSoup
BeautifulSoup是Python中一个了不起的解析库,可用于从HTML和XML文档进行Web抓取。BeautifulSoup会自动检测编码并优雅地处理HTML文档,即使带有特殊字符也是如此。我们可以浏览已解析的文档并找到所需的内容,这使得从网页中提取数据变得快捷而轻松。在本文中,我们将详细学习如何使用BeautifulSoup构建webScraperScrapy
Scrapy是用于大规模Web抓取的Python框架。它为你提供了从网站中高效提取数据,根据需要进行处理并以你喜欢的结构和格式存储数据所需的所有工具。你可以在这里阅读更多有关Scrapy的信息。